Copied to
clipboard

G = C5×C4.10C42order 320 = 26·5

Direct product of C5 and C4.10C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C4.10C42, C20.63C42, (C2×C8).1C20, (C2×C40).28C4, C4.10(C4×C20), (C2×C20).278D4, C23.1(C5×Q8), (C22×C10).1Q8, (C2×M4(2)).5C10, C20.149(C22⋊C4), (C10×M4(2)).17C2, (C22×C20).387C22, C10.41(C2.C42), (C2×C4).9(C5×D4), C22.2(C5×C4⋊C4), (C2×C4).64(C2×C20), C4.18(C5×C22⋊C4), (C2×C10).47(C4⋊C4), (C2×C20).498(C2×C4), (C22×C4).17(C2×C10), C2.3(C5×C2.C42), SmallGroup(320,143)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C4.10C42
C1C2C4C2×C4C22×C4C22×C20C10×M4(2) — C5×C4.10C42
C1C4 — C5×C4.10C42
C1C20 — C5×C4.10C42

Generators and relations for C5×C4.10C42
 G = < a,b,c,d | a5=b4=1, c4=d4=b2, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 122 in 86 conjugacy classes, 54 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C23, C10, C10, C2×C8, M4(2), C22×C4, C20, C20, C2×C10, C2×C10, C2×M4(2), C40, C2×C20, C22×C10, C4.10C42, C2×C40, C5×M4(2), C22×C20, C10×M4(2), C5×C4.10C42
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, Q8, C10, C42, C22⋊C4, C4⋊C4, C20, C2×C10, C2.C42, C2×C20, C5×D4, C5×Q8, C4.10C42, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C5×C2.C42, C5×C4.10C42

Smallest permutation representation of C5×C4.10C42
On 80 points
Generators in S80
(1 57 67 17 27)(2 58 68 18 28)(3 59 69 19 29)(4 60 70 20 30)(5 61 71 21 31)(6 62 72 22 32)(7 63 65 23 25)(8 64 66 24 26)(9 39 42 53 79)(10 40 43 54 80)(11 33 44 55 73)(12 34 45 56 74)(13 35 46 49 75)(14 36 47 50 76)(15 37 48 51 77)(16 38 41 52 78)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 39 37 35)(34 40 38 36)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 79 77 75)(74 80 78 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 33 7 35 5 37 3 39)(2 36 4 34 6 40 8 38)(9 27 11 25 13 31 15 29)(10 26 16 28 14 30 12 32)(17 73 23 75 21 77 19 79)(18 76 20 74 22 80 24 78)(41 58 47 60 45 62 43 64)(42 57 44 63 46 61 48 59)(49 71 51 69 53 67 55 65)(50 70 56 72 54 66 52 68)

G:=sub<Sym(80)| (1,57,67,17,27)(2,58,68,18,28)(3,59,69,19,29)(4,60,70,20,30)(5,61,71,21,31)(6,62,72,22,32)(7,63,65,23,25)(8,64,66,24,26)(9,39,42,53,79)(10,40,43,54,80)(11,33,44,55,73)(12,34,45,56,74)(13,35,46,49,75)(14,36,47,50,76)(15,37,48,51,77)(16,38,41,52,78), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,79,77,75)(74,80,78,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,33,7,35,5,37,3,39)(2,36,4,34,6,40,8,38)(9,27,11,25,13,31,15,29)(10,26,16,28,14,30,12,32)(17,73,23,75,21,77,19,79)(18,76,20,74,22,80,24,78)(41,58,47,60,45,62,43,64)(42,57,44,63,46,61,48,59)(49,71,51,69,53,67,55,65)(50,70,56,72,54,66,52,68)>;

G:=Group( (1,57,67,17,27)(2,58,68,18,28)(3,59,69,19,29)(4,60,70,20,30)(5,61,71,21,31)(6,62,72,22,32)(7,63,65,23,25)(8,64,66,24,26)(9,39,42,53,79)(10,40,43,54,80)(11,33,44,55,73)(12,34,45,56,74)(13,35,46,49,75)(14,36,47,50,76)(15,37,48,51,77)(16,38,41,52,78), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,79,77,75)(74,80,78,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,33,7,35,5,37,3,39)(2,36,4,34,6,40,8,38)(9,27,11,25,13,31,15,29)(10,26,16,28,14,30,12,32)(17,73,23,75,21,77,19,79)(18,76,20,74,22,80,24,78)(41,58,47,60,45,62,43,64)(42,57,44,63,46,61,48,59)(49,71,51,69,53,67,55,65)(50,70,56,72,54,66,52,68) );

G=PermutationGroup([[(1,57,67,17,27),(2,58,68,18,28),(3,59,69,19,29),(4,60,70,20,30),(5,61,71,21,31),(6,62,72,22,32),(7,63,65,23,25),(8,64,66,24,26),(9,39,42,53,79),(10,40,43,54,80),(11,33,44,55,73),(12,34,45,56,74),(13,35,46,49,75),(14,36,47,50,76),(15,37,48,51,77),(16,38,41,52,78)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,39,37,35),(34,40,38,36),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,79,77,75),(74,80,78,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,33,7,35,5,37,3,39),(2,36,4,34,6,40,8,38),(9,27,11,25,13,31,15,29),(10,26,16,28,14,30,12,32),(17,73,23,75,21,77,19,79),(18,76,20,74,22,80,24,78),(41,58,47,60,45,62,43,64),(42,57,44,63,46,61,48,59),(49,71,51,69,53,67,55,65),(50,70,56,72,54,66,52,68)]])

110 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D8A···8L10A10B10C10D10E···10P20A···20H20I···20T40A···40AV
order122224444455558···81010101010···1020···2020···2040···40
size112221122211114···411112···21···12···24···4

110 irreducible representations

dim111111222244
type+++-
imageC1C2C4C5C10C20D4Q8C5×D4C5×Q8C4.10C42C5×C4.10C42
kernelC5×C4.10C42C10×M4(2)C2×C40C4.10C42C2×M4(2)C2×C8C2×C20C22×C10C2×C4C23C5C1
# reps1312412483112428

Matrix representation of C5×C4.10C42 in GL4(𝔽41) generated by

18000
01800
00180
00018
,
32000
03200
00320
00032
,
98408
32990
180328
0233232
,
011637
903629
00032
0010
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[9,32,18,0,8,9,0,23,40,9,32,32,8,0,8,32],[0,9,0,0,1,0,0,0,16,36,0,1,37,29,32,0] >;

C5×C4.10C42 in GAP, Magma, Sage, TeX

C_5\times C_4._{10}C_4^2
% in TeX

G:=Group("C5xC4.10C4^2");
// GroupNames label

G:=SmallGroup(320,143);
// by ID

G=gap.SmallGroup(320,143);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,568,248,3511,172,10085,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=1,c^4=d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽